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Abstract. We first investigate the band gap structures of two-dimensional magnetic photonic crystals
(MPC) composed of rectangular (square) magnetic cylinders embedded in a host dielectric material in
the rectangular (square) lattice, and we then study guide modes at interface of MPC heterostructures
(MPCHs) by use of plane wave expansion method in combination with supercell technique. We find that
both the mirror-symmetric MPCHs and the mixed-type MPCHs composed of square cylinders in a square
lattice can produce the TM guide modes even without any lattice distortions. This feature is quite different
from that of the non-magnetic PC heterostructures, in which the occurrence of the guide modes requires
the relatively longitudinal gliding or transverse displacement of lattices. It may provide a new way to
generate guide modes and apply to the device of light wave guides.

PACS. 42.70.Qs Photonic bandgap materials – 78.67.-n Optical properties of low-dimensional, mesoscopic,
and nanoscale materials and structures – 63.20.Pw Localized modes – 42.79.Gn Optical waveguides and
couplers

1 Introduction

The band structures of photonic crystal (PC) have
attracted great interest after the pioneering works of
Yablonovitch and John [1,2]. The conventional non-
magnetic photonic crystal (NMPC) is a periodical modu-
lation structure of dielectric constant; its dispersion rela-
tion of photons exhibits some forbidden frequency regimes,
i.e., photonic band gap (PBG) structures. The presence of
PBGs provides a wide platform of many applications, for
instance, the light wave guides used for controlling the
propagation of light waves flexibly [3–5]. The light wave
guides can be created by introducing line defects in an
ideal PC. Recently, Li et al. have reported the band struc-
tures of a heterostructure composed of two semi-infinite
two-dimensional PCs with different filling factors for circu-
lar cylinders [6]. They found that the interface states can
be generated either by introducing relatively longitudinal
gliding of the cylinders in the lattices on the two sides
of the interface of heterostructure (referred to the lon-
gitudinally gliding of lattice), or displacing the cylinders
in the lattices on the either sides of the interface, trans-
versely leaving a distance about the interface (referred to
the transverse displacement of lattices). Their work pro-
posed a new way to create the guide modes. More re-
cently, we suggested another style of PC heterostructures
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(PCHs) which are composed of rectangular (square) air
cylinders, setting in a rectangular (square) lattice, with
different rotation angles on the two sides of interface [7].
For instance, the rectangular cylinders in the left lattice
and right lattice of the PCHs are rotated by an identical
angle but in clockwise and anticlockwise, respectively. It
exhibits mirror-symmetry with respect to the interface. A
lot of TE (TM) guide modes are observed when the mirror-
symmetric is broken, e.g. introducing the relatively longi-
tudinal gliding or transverse displacement of the lattices
together with cylinders. However, for the perfect mirror
symmetric PCH, there is no any guide mode appearing
within the PBGs. Therefore, it is an important and in-
teresting topic how to find new kind of PCHs that can
produce guide modes without making any relative shift of
the Bravais lattices on the either sides of the interface of
the PCH.

Many researchers have devoted to diversify the class
of PCs, for instance, not only including dielectric medium
but also involving other materials such as semiconduc-
tors [8], conductors, liquid-crystals [9,10] and magnetic
materials [11–13]. It is worth pointing out that magnetic
photonic crystal (MPC), as a new candidate of PC, has
been widely studied theoretically [11–13]. One of the foci
is the investigations of the effects of magnetic permeabil-
ity on the frequency position and width of PBGs. As
the MPC is composed of magnetic (dielectric) cylinders
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periodically embedded in dielectric (magnetic) materials,
therefore, the wave impedance should bring significant in-
fluence on PBGs [14]. The effects of magnetic permeability
may lead to a wide PBG located at low frequency regime,
which results in a large gap-midgap ratio ωR = ∆ω/ωg,
where ωg denotes the central frequency of the PBG and
∆ω the PBG width. The large ∆ω and ωR are favorable
to the fabrication of the light waveguide.

In this paper, we study the properties of the guide
modes in the MPCHs. We first calculate the band struc-
tures of two-dimensional MPCs which are composed of
magnetic rectangular (square) cylinders in rectangular
(square) lattice, and then investigate the guide modes of
the heterostructures composed of two semi-infinite MPCs.
The plane-wave expansion method in combination with
a suppercell technique is employed. We find that the
MPCHs with mirror-symmetric structures composed of
square cylinders in square lattice or the mixed MPCHs
composed of square cylinders in square lattice can pro-
duce the TM guide modes without modifying the original
MPCHs.

The rest parts of this article are organized as follows.
Section 2 describes the necessary formulas used in the cal-
culations for the 2D MPCHs. The calculated results for
prototype MPCs and the related heterostructures are pre-
sented and discussed in Section 3. Finally a brief summary
is given in Section 4.

2 Formulas

We consider a two-dimensional PC composed of cylinders
with dielectric constant ε(x, y) and magnetic permeabil-
ity µ(x, y); both the dielectric constant and the magnetic
permeability are homogeneous along the z-axis. The elec-
tromagnetic wave fields in the 2D PC are governed by the
following equations [11]

∇×
[

1
ε(x, y)
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1
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B(x, y)
) ]
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(ω

c

)2

B(x, y). (1)

We now treat equation (1) by use of plane wave expansion
method [11–15], i.e. consider a periodical modulation of
magnetic induction function in the 2D MPC, and expand
magnetic induction function in terms of plane waves as

B(r) =
∑
G

2∑
λ=1

bλ(G)eλei(k+G)·r, (2)

where r = (x, y) and G denotes the reciprocal lattice vec-
tor of the 2D lattice, and e1(e2) is the unit vector of the
polarization direction of the TE(TM) modes. Substituting
equation (2) into equation (1), we can derive two eigen
equations as
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for the TM mode. ε(G) and µ(G) represent the Fourier
transforms of ε(r) and µ(r), respectively. These equations
can be numerically solved and used to calculate the PBG
structures of MPCHs in combination with supercell tech-
nique [4–6]. The size of supercells should choose large
enough to guarantee the correctness of the results, i.e.,
the coupling effects between neighboring supercells can
be neglected, thus the plane-wave expansion method still
can be approximately suitable to the calculation of the
PBGs structures of heterostructures. The heterostructure
considered here is composed of two semi-infinite 2D rect-
angular (or square) lattices with rectangular (or square)
magnetic (or dielectric) cylinders embedded in a homo-
geneous dielectric (or magnetic) medium. A sketch of the
model MPCH is shown in Figure 1a. The lattice constants
of the rectangular (square) lattice are denoted by lx(a)
and ly (a) for the x and y axes; the short-side and long-
side lengths of the individual rectangular cylinders by la
and lb, respectively. θr and θl represent the inclined an-
gles of the long-side of the rectangular cylinders against
the x axis for the right- and left-side lattices, respectively.
The y axis is parallel to the interface. We also display
the modified lattice structures of the MPCH after mak-
ing the longitudinal gliding of the cylinders in the lat-
tice on the either sides of the interface of heterostruc-
ture along the interface, as shown in Figure 1b. To de-
termine the PBG structures of the perfect MPCs, we em-
ploy the plane wave expansion method, however, in the
calculations of the dispersion curves of the MPCHs, we
adopt the supercell method, in which the enlarged rectan-
gle lattice consists of m× 1 original unit cells from either
sides of the interface of heterostructure. Thus, every unit
cell of the supercells is composed of 2m × 1 original unit
cells. The primary vectors of this supercell are chosen by
a1 = (2m, 0)lx and a2 = (0, 1)ly. The first Brillouin zone
is of rectangle. The PBG structures of the heterostruc-
ture are determined from calculating the photonic density
of states (DOS) only in the irreducible Brillouin zone of
the supercell lattice. The number of the plane waves in
the expansion should be large enough to guarantee the
precision of numerical results.

3 Numerical results

3.1 Band structures of prototype MPCs

We first calculate the density of states (DOS) of the MPC
which is composed of rectangular pure magnetic cylinders
setting in a rectangular lattice and embedded in a pure
dielectric material. We set θr = θl( referred to sample A),
the calculated result is shown in Figure 3a. From refer-
ence [15], it is known that this kind of the non-magnetic
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Fig. 1. Sketch of magnetic photonic crystal heterostructure
(MPCH). The MPCH is composed of two semi-infinite 2D
PCs with rectangular (square) lattice together with rectangu-
lar (square) pure magnetic cylinders embedded in a pure host
dielectric. The lattice constants of the rectangular (square) lat-
tice are denoted by lx(a) and ly(a) for the x and y axes; the
short-side and long-side lengths of the rectangular magnetic
cylinders by la and lb, respectively. θr and θl are the inclined
angles of the long-side of the rectangle cylinder against the x
axis for the right and left lattices of the interface, respectively.
(a) The perfect MPCH; (b) introducing relatively longitudi-
nal gliding dy of the the lattices together with cylinders on
the either sides of the interface of heterostructure to the host
medium along the interface.

PCs (NMPCs) can produce the largest absolute PBG in
the frequency range of [0.363, 0.405](2πc/ly) when choos-
ing the following parameters : la/lb = 0.84, ly/lx = 0.8,
ε = 12.96, filling factor f = 0.688, and rotating angle
θ = 28◦. Fixing la/lb = 0.84 and ly/lx = 0.8, i.e., retain-
ing the rectangular shape of the cylinders and the lattice,
we consider the magnetic cylinders and scan the perme-
ability in combination with the change of the other pa-
rameters such as the rotation angle, the filling factor, and
the dielectric of the host material, to find optimal pa-
rameters. Finally, the largest absolute PBG in the range
of [0.090, 0.136](2πc/ly) can be obtained for the parame-
ters of f = 0.668, θ = 28◦, and ε = 16.00, µ = 13.69, as

Fig. 2. DOSs of the MPC composed of rectangular magnetic
cylinders embedded in a homogeneous dielectric medium in a
rectangular lattice. The parameters used are as follows: The
short-long side length ratio of lattice is ly/lx = 0.8; the short-
long side length ratio of scatterer is la/lb = 0.84; the filling
factor is f = 0.668, and the rotation angle of rectangular cylin-
ders is θ = 28◦ The dielectric constant is εb = 16.00 and the
magnetic permeability is (a) µ = 13.69 and (b) µ = 1.

shown in Figure 2a. These values of ε and µ are completely
compatible with realistic materials. Here 400 k-points in
the 2D first BZ have been involved in the calculations
of the DOS. For validating the precision, we checked the
absolute PBG of sample A by the band structure calcu-
lation directly and find that the relative deviation is less
than 1%. Therefore, we believe that this number of k-
points is sufficient large enough for determining the PBG
range. From Figure 2a, we obtain that the gap width is
∆ω = 0.046(2πc/ly), the frequency position of the mid-
gap is ωg = 0.113(2πc/ly), and the large gap-midgap ratio
is ωR = ∆ω/ωg = 40.7%. This gap is referred to the first
absolute PBG. Besides it, the second absolute PBG stands
at a higher frequency regime. However, comparing to the
corresponding NMPC sample presented in reference [15],
there exists an absolute gap located at a higher frequency
position of ωg = 1

2 (0.405 + 0.363) = 0.384(2πc/ly). It is
evident that the gap-midgap ratio in the MPC now is
larger than that in the NMPC. To reveal the effect of the
permeability of cylinders on the band structures of PC,
we recalculate the PBGs for another sample quite simi-
lar to sample A only except for the permeability µ = 1
of cylinders, fixed other parameters. The corresponding
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Fig. 3. Same as Figure 2 except only for the pure magnetic
square cylinders setting on a square lattice. The parameters
used are: f = 0.59, θ = 30.5◦, εb = 12.96, (a) µ = 8.41 and (b)
µ = 1.

DOSs are plotted in Figure 2b. The absolute PBG is lo-
cated at [0.322, 0.354](2πc/ly) below the second absolute
PBG of the MPC, comparing Figures 2a and 2b. When
increasing the permeability of cylinders, this absolute gap
is gradually shifted upward the higher frequency regime,
approaching the second absolute gap of sample A in Fig-
ure 2a, and meanwhile, its gap width is substantially nar-
rowed. In addition, a new absolute gap is opened at a
lower frequency regime. When µ = 13.69, the new gap is
opened at [0.090, 0.136](2πc/ly), which now is re-referred
to the first absolute gap, while the original absolute gap
at a higher frequency of [0.376, 0.394](2πc/ly) now is re-
referred to the second absolute gap, as shown in Fig-
ure 2a. It is worth pointing out that the width (0.046
2πc/ly) of the first absolute gap is much larger than that
(0.018 2πc/ly) of the second absolute gap.

We now change the shape of the cylinders and the
lattice. Figure 3a displays the DOSs of square lattice con-
taining square magnetic cylinders (referred to sample B).
The optimal parameters can be found by consulting to
reference [15] and scanning the related parameters over
a large range to search for the maximal absolute PBG
width, fixed the shape of square cylinders and the square
lattice. The optimal parameters are found to be ε = 12.96,
µ = 8.41, f = 0.59, and θ = 30.5◦. Sample B has a broad
absolute PBG lying in [0.118, 0.190](2πc/a); the width is
∆ω = 0.072(2πc/a), and ωR = 46.8%, compared to sam-
ple A. Here a denotes the lattice constant of square lattice.

Similar to sample A, using magnetic cylinders can lead to
the opening of a new gap at low frequency regime. A ma-
jor difference between samples A and B is that only an
absolute PBG of lower frequency exists in sample B. Al-
though the second absolute gap of higher frequency for the
TE modes exists in the range of [0.362, 0.424](2πc/a) in
Figure 3a when µ = 8.41, the narrow width gap of the TM
mode now is closed. Therefore, the second absolute gap of
the higher frequency disappears now, as seen in Figure 3a.
For a comparison, we also plot the DOSs for a sample quite
similar to sample B except only for µ = 1.0, as shown in
Figure 3b. It is seen that only one absolute PBG lies at
the higher frequency region of [0.366, 0.390](2πc/a). When
increasing µ, this absolute gap is closed gradually. It leads
to only the survival of the lower frequency absolute gap.

The above results are calculated by a plane-wave ex-
pansion method with the use of the number N = 1235 of
the plane waves and m = 4. To confirm the correctness of
the results, we increase this number to N = 1679 and re-
calculate the PBG structures of Sample B. The obtained
results show that the absolute PBG is lying in a range of
[0.115, 0.186](2πc/a). The relative deviation between two
calculated results for N = 1235 and 1679 is 1.39% for ∆ω
and 0.33% for ωg.

3.2 Guide modes in MPCH with rectangular (square)
cylinders in a rectangular (square) lattice

We now turn to study the characteristics of the guide
modes of the MPCH composed of two magnetic PCs,
as shown in Figure 1. Two semi-infinite 2D MPCs on
both sides of the interface have the physical and geo-
metric parameters as the same as those of sample A,
i.e., la/lb = 0.84, ly/lx = 0.8, εb = 16.00, µ = 13.69,
f = 0.668,and θ = 28◦ except only for different rotation
angles of rectangular (square) cylinders. The rotation an-
gle of the rectangular cylinders on the either sides of the
interface is opposite, i.e., θl and θr(= −θl), respectively, as
shown in Figure 1a. It forms a mirror-symmetric structure
with respect to interface. The obtained dispersion spec-
trum is similar to the mirror-symmetric NPCHs, that is,
rotating the rectangular cylinders on two semi-infinite PCs
in opposite directions can not generate any guide mode
when not introducing relatively longitudinal gliding or
transversely displacing of lattices together with cylinders.
In this heterostructure, we only observe an absolute PBG
at [0.089, 0.133](2πc/ly), it is a little narrower than the
PBG at [0.090, 0.136](2πc/ly) of the corresponding pro-
totype MPC, i.e., sample A. When introducing relatively
longitudinal gliding of the lattice together with cylinders
on the either sides of the interface of heterostructure to the
host medium by a distance of dy = 0.5ly, the original mir-
ror symmetry of structure is broken now, two TM guide
modes appear inside the absolute PBG. The band struc-
ture is shown in Figure 4. Here the solid (dashed) lines
correspond to the TE (TM) modes; the two solid horizon-
tal lines indicate the edges of absolute PBG, and the open
circles denote the TM guide modes. Hereafter, we always
employ these line styles to plot the PC band structures.
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Fig. 4. Band structures of the MPCH composed of rectangu-
lar magnetic cylinders in a rectangular lattice when introduc-
ing relatively longitudinal gliding of the lattices together with
cylinders by dy = 0.5ly . The parameters are the same as those
in Figure 2a except for the rotation angle of rectangular cylin-
ders θr = −θl = 28◦ now. The solid lines, dashed lines, and
opened circles correspond to the TE modes, TM modes, and
TM guide modes, respectively.

For clarity, only several bands around the first absolute
PBG are plotted in Figure 4. It is seen from Figure 4 that
the absolute PBG locates at [0.099, 0.133](2πc/ly) with a
ratio of ωR = 29.3% and a width of ∆ω = 0.034(2πc/ly)
narrower than that of the perfect MPCH. It is evident
that ∆ω and ωg in the perfect MPCH are much larger
than those in the corresponding NMPCH with the same
gliding distance of dy = 0.5ly. In the later case, we ob-
serve an absolute PBG at [0.373, 0.399](2πc/ly) [7] with
∆ω = 0.025(2πc/ly) and ωR = 6.5%. When changing the
gliding distance, the frequency of the guide modes can be
shifted accordingly.

We now turn to consider another structure. We choose
two pieces of sample B (square cylinders in the square
lattice with ε = 12.96, µ = 8.41, f = 0.59, θ = 30.5◦)
to construct a mirror-symmetric MPCH. We find that
two TM guide modes appear in the absolute PBG. The
band structures are plotted in Figure 5. The absolute PBG
stands at the range of [0.120, 0.186](2πc/a) with a width
of ∆ω = 0.066(2πc/a) and ωR = 43.1%. Two TM guide
modes extend over a full region of ky, which is favorable for
light waveguides. More interesting feature of this MPCH
is that the occurrence of the guide modes does not request
any lattice distortion. This property is quite different from
that of the NMPC heterostructures (NMPCHs) composed
of the air circular cylinders in a square lattice with differ-
ent filling factors on the either sides of the interface [6]
or the air rectangular (square) cylinders in a rectangu-
lar (square) lattice with different rotation angles of cylin-
ders [7]. In these NMPCHs, to produce guide modes, the
relatively longitudinal gliding or transverse displacement
of lattices is necessary [7].

Fig. 5. Band structures of the MPCH composed of square
magnetic cylinders in a square lattice. The parameters are as
the same as those in Figure 3a except for θr = −θl = 30.5◦.

Fig. 6. Sketch of the mixed-type MPCH. The shadows and
blank areas represent the pure magnetic material with perme-
ability µ and the pure dielectric with the dielectric constant ε,
respectively.

3.3 Guide modes in the mixed MPCH

We now consider another type of MPCHs, the so-called
mixed type MPCH is schematically shown in Figure 6.
The semi-infinite MPC on the left (right) side of the in-
terface is composed of square pure magnetic (pure di-
electric) cylinders embedded in a pure dielectric (pure
magnetic) background medium in a 2D square lattice.
The magnetic (dielectric) material, wherever it appears
in the left side of the interface as the scatterers (back-
ground) or in the right side as the background (scatter-
ers), always possesses the same permeability (dielectric-
ity). The square cylinders in the two semi-infinite MPCs
have identical rotation angle. We choose the parameters
as ε = 12.96, µ = 8.41, θ = 30.5◦, and fl = fr = 0.59.
Here fl and fr denote the filling factors in the left and
the right MPCs, respectively. Namely, the PC on the left
of interface just corresponds to the prototype structure of
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Fig. 7. Band structures of the mixed-type MPCH composed of
square cylinders in a square lattice with εb = 12.96, µ = 8.41,
and the filling factor is fl = fr = 0.59.

sample B that possesses a large PBG, as shown in Figure 3.
The calculated PBG spectrum is displayed in Figure 7. In
this mixed MPCH, the PBG of the TM modes is located
at the frequency range of [0.106, 0.176](2πc/a), while the
PBG of the TE mode is located at the frequency range of
[0.132, 0.201](2πc/a). In other words, the absolute PBG
is formed in [0.132, 0.176](2πc/a). Two TM guide modes
span over the frequency range from 0.110 to 0.121(2πc/a).
Thus, these two TM localized modes are out of the fre-
quency range of the absolute gap and they do not generate
any guide mode now.

To produce the guide modes, we adjust the related
parameters, and find that the change of the filling factors
fl and fr can effectively shift the frequency position of
the localized modes and create guide modes. For instance,
we choose fl = 0.320 and fr = 0.600, the absolute PBG
shifts down to the frequency range of [0.121, 0.165](2πc/a)
and meanwhile two localized modes go upward entering
the PBG, as shown in Figure 8. The guide modes now
appear in the region of ky from 0.4 to 1.0 (2π/a). The
PBG width is ∆ω = 0.044(2πc/a) and the gap-midgap
ratio is ωR = 30.8% in this special mixed-type MPCH.

As indicated in reference [6], the NMPCH composed of
circles cylinders with different filling factors on either sides
of the interface can not create any guide mode when not
introducing the relatively longitudinal gliding or trans-
verse displacement of lattices. This conclusion still re-
mains for the NMPCH when the scatterers are square air
cylinders. We confirm this conclusion by the calculations
with the use of various filling factors in the lattices on the
either sides of the interface. For instance, when scanning
the filling factor from 0.59 to 0.73 with an increment of
0.01, no any interface state can be observed. However, in
the mixed-type MPCH, the difference of filling factors of
the PCs on the either sides of the interface can generate
guide modes even without making any longitudinal gliding
or any transverse displacement of lattices together with

Fig. 8. Same as Figure 7 except only for the left filling factor
of fl = 0.320 and the right filling factor of fr = 0.600.

cylinders. We also calculate the PBGs of the mixed-type
MPCH composed of rectangular cylinders in the rectan-
gular lattice. There is no any guide mode for the perfect
MPCH.

4 Summary

We have calculated the DOSs of the MPCs and the PBG
structures of the MPCHs with the use of the plane-wave
expansion method in combination with a supercell tech-
nique. The large absolute PBGs in the MPCs, which are
composed of rectangular (square) pure magnetic cylinders
embedded in a pure dielectric medium background with
rectangular (square) lattice, can be obtained by choosing
proper parameters. Based on the obtained PBGs struc-
tures, we constructed two kinds of MPCHs and inves-
tigated the properties of the guide modes. In mirror-
symmetric MPCHs, we find that, when square cylinders
are set on the square lattice, two TM guide modes can
be created even without making any longitudinal gliding
or transverse displacement of lattice together with cylin-
ders. Regarding to the mixed-type MPCHs composed of
two pieces of semi-infinite MPCs in which the PC on
the left (right) side of the interface consists of square
pure magnetic (pure dielectric) scatterers embedded in
a pure dielectric (pure magnetic) background medium in
a 2D square lattice. The magnetic (dielectric) material,
whenever it appears in the left side of the interface as
cylinders (background) or in the right side as background
(cylinders), possesses the same permeability (dielectric-
ity). When using different filling factors for the PCs on the
opposite side of the interface, we find that two TM guide
modes can be generated without introducing any lattice
distortion. It is expected that introducing magnetic ma-
terial into the PCs should diversify the candidate of the
PCs in practical applications.
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